245 research outputs found

    Higgs boson masses in supersymmetric theories

    Get PDF
    The Higgs boson mass problem is considered in the next to minimal supersymmetric standard model. The Higgs potential and the renormalization group equations for the gauge, Yukawa and scalar coupling constants are analyzed. The restrictions for the Higgs boson masses are found for the cases of presence and absence of spontaneous CP- violation

    Complete gluon bremsstrahlung corrections to the process b -> s l+ l-

    Full text link
    In a recent paper, we presented the calculation of the order (alpha_s) virtual corrections to b->s l+ l- and of those bremsstrahlung terms which are needed to cancel the infrared divergences. In the present paper we work out the remaining order(alpha_s) bremsstrahlung corrections to b->s l+ l- which do not suffer from infrared and collinear singularities. These new contributions turn out to be small numerically. In addition, we also investigate the impact of the definition of the charm quark mass on the numerical results.Comment: 20 pages including 11 postscript figure

    Local density of states of chiral Hall edge states in gyrotropic photonic clusters

    Full text link
    We have constructed the Green's tensor for two-dimensional gyrotropic photonic clusters and have calculated their optical local density of states (LDOS). For clusters that support the chiral Hall edge states we calculate the LDOS as a function of wavele

    Modal Analysis Of Enhanced Absorption In Silicon Nanowire Arrays

    Full text link
    We analyze the absorption of solar radiation by silicon nanowire arrays, which are being considered for photovoltaic applications. These structures have been shown to have enhanced absorption compared with thin films, however the mechanism responsible for this is not understood. Using a new, semi-analytic model, we show that the enhanced absorption can be attributed to a few modes of the array, which couple well to incident light, overlap well with the nanowires, and exhibit strong Fabry-Perot resonances. For some wavelengths the absorption is further enhanced by slow light effects. We study the evolution of these modes with wavelength to explain the various features of the absorption spectra, focusing first on a dilute array at normal incidence, before generalizing to a dense array and off-normal angles of incidence. The understanding developed will allow for optimization of simple SiNW arrays, as well as the development of more advanced designs

    Absorption enhancing proximity effects in aperiodic nanowire arrays

    Full text link
    Aperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the equi

    Direct CP-asymmetry in Inclusive Rare B-decays in 2HDM

    Get PDF
    The direct CP-asymmetry in the inclusive BXdγB \to X_d \gamma and BXde+eB \to X_d e^+ e^ - decays is investigated in the two-Higgs doublet extension of the Standard Model (2HDM). The investigation is performed in the lowest non-vanishing order of the perturbation theory using the existing restrictions on the 2HDM parameters space. It is shown that the direct CP-asymmetry in the BXdγB \to X_d \gamma decay can deviate significantly from the Standard Model predictions. In the presence of only one source of CP-violation (the CKM matrix weak phase) aCP(BXdγ)a_{CP}(B \to X_d \gamma) can have the sign opposite to that in the SM. The new source of CP-violation can make aCP(BXdγ)|a_{CP}(B \to X_d \gamma)| arbitrary small (unlike the SM case) and hence unmeasurable. Quantitatively, the obtained results suffer from the uncertainty of the choice of renormalization scale. As for the BXde+eB \to X_d e^+ e^ - rate asymmetry, its renormalization scale dependence in the lowest non-vanishing order does not allow to conclude if this quantity is efficient for testing New Physics beyond the Standard Model.Comment: 16 pages including 2 figure

    Two-dimensional local density of states in two-dimensional photonic crystals

    Full text link
    We calculate the two-dimensional local density of states (LDOS) for two-dimensional photonic crystals composed of a finite cluster of circular cylinders of infinite length. The LDOS determines the dynamics of radiation sources embedded in a photonic crystal. We show that the LDOS decreases exponentially inside the crystal for frequencies within a photonic band gap of the associated infinite array and demonstrate that there exist "hot" and "cold" spots inside the cluster even for wavelengths inside a gap, and also for wavelengths corresponding to pass bands. For long wavelengths the LDOS exhibits oscillatory behavior in which the local density of states can be more than 30 times higher than the vacuum level. © 2001 Optical Society of America

    Manifestation of photonic band structure in small clusters of spherical particles

    Get PDF
    We study the formation of the photonic band structure in small clusters of dielectric spheres. The first signs of the band structure, an attribute of an infinite crystal, can appear for clusters of 5 particles. Density of resonant states of a cluster of 32 spheres may exhibit a well defined structure similar to the density of electromagnetic states of the infinite photonic crystal. The resonant mode structure of finite-size aggregates is shown to be insensitive to random displacements of particles off the perfect lattice positions as large as half-radius of the particle. The results were obtained by an efficient numerical method, which relates the density of resonant states to the the scattering coefficients of the electromagnetic scattering problem. Generalized multisphere Mie (GMM) solution was used to obtain scattering matrix elements. These results are important to miniature photonic crystal design as well as understanding of light localization in dense random media.Comment: 4 pages, 2 figure

    bsγb \to s \gamma decays in the Left-Right Symmetric Model

    Full text link
    We consider bsγb \to s \gamma decays in the Left-Right Symmetric Model. Values of observables sensitive to chiral structure such as the Λ\Lambda polarization in the ΛbΛγ\Lambda_b \to \Lambda \gamma decays and the mixing-induced CP asymmetries in the Bd,sM0γB_{d,s} \to M^0 \gamma decays can deviate in the LRSM significantly from the SM values. The combined analysis of PΛP_\Lambda and ACPA_{CP} as well as BR(bsγ){\cal BR}(b \to s \gamma) can be used to determine the model parameters.Comment: 16 pages with 7 figures, Version to be published in PR

    NNLL corrections to the angular distribution and to the forward-backward asymmetries in b -> X_s l+ l-

    Get PDF
    We present NNLL results for the double differential decay width dGamma(b -> X_s l+ l-)/(dsh dcos(theta)), where theta is the angle between the momenta of the b-quark and the l+, measured in the rest-frame of the lepton pair. From these results we also derive NNLL results for the lepton forward-backward asymmetries. Genuinely new calculations for the combined virtual- and gluon bremsstrahlung corrections associated with the operators O_7, O_9 and O_10 are necessary. We find that the NNLL corrections drastically reduce the renormalization scale dependence of the forward-backward asymmetries. In particular, sh_0, the position at which the forward-backward asymmetries vanish, is essentially free of uncertainties due to the renormalization scale at NNLL precision. We find sh_0(NNLL)=0.162 +/- 0.005, where the error is dominated by the uncertainty in (m_c/m_b). This is to be compared with sh_0(NLL)=0.144 +/- 0.020, where the error is dominated by uncertainties due to the choice of mu.Comment: 26 pages including 11 postscript figure
    corecore